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Several cases have occurred recently in practice where the substance to

be filtered is frequently in the strata in gaseous form in the initial
state (before working). Then, when the pressure is reduced, the heavier
components of the substance to be filtered fall out in the liquid state,
i.e., as a condensate, a certain proportion of which saturates the rock

and is irreversibly lost in the stratum. Until the attainment of a certain
degree of saturation of the porous medium by liquid (saturation equi-
librium) the liquid remains at rest.

In this work we state the problem of filtration and put forward a so-
lution for the simplest cases of gas-condensate mixture in a porous
medium, It should be pointed out that some consideration has already been
given to the problem in [1 1.

1. The gas velocity v, and liquid velocity V, in inertialess motions
of gas-liquid mixtures through porous media are connected to the pressure
gradient p and the degree of saturation s of a stratum by liquid by the
following relations [1]:

vi=—"L graap,  v=— L graap (1)

In these relations k is the permeability of
the porous medium; f,(s), f,(s) are the so-called
relative phase permeabilities for liquid and gas;
By, po are viscosities of liquid and gas, re-
spectively.

To a first approximation, quantities f1+ far By, p, are censidered in-
dependent of pressure.
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Figure 1 shows typical curves (see, for instance, [2 1) of relative
phase permeabilities versus degree of saturation. Typical features of
these curves are: at saturations less than equilibrium saturation s,
function f,(s) is identically equal to zero, i.e. the liquid is station-
ary. The value of s can vary between 0.2 and 0.5 depending on the rock.
Furthermore, when s is small the values of function f,(s) are close to
unity, i.e. the permeability for gas only slightly decreases with fall-
out of condensate. Thus, for small saturations we can assume the liquid
to be stationary, and the relative gas permeability is taken as unity.

The relation between specific volume V of stabilized condensate,
corrected for normal conditions, and the pressure at constant tempera-
ture can be represented, approximately, as follows:

Vo

— 1.2
o (m<r<p) (1.2)

V=A4(p—p) A=
Here V, is the maximum specific volume of the condensate, p, is the
pressure when condensation starts, p, is the pressure when condensation
is a maximum.

We assume that the gas density does not vary during condensation, and
we neglect compressibility of the condensate,
both of these assumptions being justified by
experiment,

}
With low saturatioms it is also possible to /
t

neglect variations in rock porosity to the gas 2
. . I/g P;

and change in the mass of the gas resulting

from condensation. Fig. 2.

Thus, assuming low saturations and the usual
characteristics of ideal gas and also isothermal gas flow during filtra-
tion, using the equation of gas filtration [3 ], we can write

ap .k
w=ear (0= g5g) (3

Let us construct a differential equation to determine the change in
saturation. In accordance with (1.2), the volume of condensate falling

out in an arbitrary volume of stratum r in time dt is determined by the
volume integral

dt SSSA ;%—(vg-gradp +m %) dr

where p, p, are the densities of the gas under strata and normal condi-
tions, respectively., Fall-out of condensate leads to an alteration in
the amount of liquid over the interval dt in volume r by
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dt Sggm % d

T

If we equate these quantities and make use of arbitrary volume r, we
arrive at the required equation for the degree of saturation in the form
ds p /¥y 31) 1
Gr= AL (G gradp+ (1.4)
In accordance with the above, let us assume that at the initial in-

stant the saturation is zero everywhere in the stratum; then on integrat-
ing Equation (1.4) we find

1

s:Ag—p—<v2-gradp—|—%}%>dt (1.5)
0

Po \ m

In view of (1.1) and because of low saturation, this equation can be
reduced to this form:

t t
_ Ak ¢ p P dp 1.6
s = S - (grad p)2dt + A § = dt (1.6)

miky i
0
However, bearing in mind that the gas is ideal and the motion is iso-

thermal
p T

_P;_ Ty

P

where p,, T, are pressure and temperature corresponding to normal condi-
tions, and T, is the stratum temperature, so that Equation (1.6) reduces
to the final form

t

§ = bg p (grad p)dt +- c{p? (x, y, 2, t) — p* (x, y, 2, 0)] 1.7
0
G= AT, ’c:Aﬂ>
pam poTy 2peT

Thus, if we know the solution to the problem of gas motion with the
given boundary and initial conditions, we can find the saturation dis-
tribution for the motion of gas-condensate mixture from Formula (1.7).

2. We will now deal with plane radial filtration of gas-condensate
mixture to a single pore of small radius in an infinite stratum.

Pressure p(r, t) and saturation s{r, t) satisfy the equations

A o RN R L/ I (2.1)

Bt ar? r or
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We specify the following boundary and initial conditions:

p(rvo)—-ph P(OO t)=p1,s(r,0)=0 (22)
}L?anhp;[;l : 01 _ gy = cfist (2.3)

where h is the thickness of the stratum, ry is the radius of the pore
and g, is the gas flow or discharge reduced to normal conditions.

Both here and in the following discussions the problem will be simpli-
fied by dealing with the case where initial stratum pressure is equal to
the pressure when condensation starts.

Using the TI-theorem [5 ], the solutions of system (2.1) are repre-
sented as follows:

(1) _ r __ _GoltapoT
@0 =~ FiE ), i
s =Fy(& Mo, 8) 6 =B §—2pr (25

It was demonstrated in [4 ] that the first equation of (2.1) can be
linearized with sufficient accuracy as suggested by Leibenzon [3 1. Then
for F; we have

=V 1 -1 AEi(— ) (2.6)

If we insert (2.4) and (2.5) into the second of Equations (2.1) we
arrive at the following ordinary differential equation for F,:

28,F, (dFl) +§dFs §2F1§(—%p~g— =0 (27)

Inserting (2.6) inte (2.7) and taking account of conditions F (e, A)=1
and Folw, A, 8,, 8,) = 0, we obtain

_A,__i exp(—'4EYdE Sk p./ 14
§ 2 B V1A Ei(— 8 4E1< BE’) @8)

3. We will discuss the transient filtration of a gas-condensate mixture
into a straight gallery located in a semi-infinite stratum.

Pressure p(x, t) and saturation s(x, t) satisfy the system

op _ L s _, rap\e , op
ST o "aT_bp(ch‘J + 5 3.1

We look for the solution to this system with the conditions
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p0,)=ps  ploe,)=p, p,0=p, s(z0=0 (3.2

Because of the Il-theorem the solution of system (3.1) embodies
similarity and has the form

Rl R(e ) (tmer)s swo=R(E 2 @9

If we insert (3.3) into (3.1) we obtain

1 aF dF dF, dF
T =0 R (E e R -aF =0 (3.4

Conditions {3.2) take the form

F1< 22 )=1, Fi(0, P“) 2, F2<w,%,61,6£>:=9 (3.5)

Results of a numerical solution to the first of Equations (3.4) with
the given conditions are presented in [6 ].

From the second equation {3.4) we obtain by integration

Fy= 20, 3 PG as + S F e — 1) (3.6)

!

4. For solving the problem of Section 2, let us use the method of pro-

gressive change in steady-state conditions. We deal with the so-called
first phase.

The pressure distribution with steady gas filtration is determined by
the formula (see, for instance, [2])

Py =n) t—rmE  w<r<r) 4.1

If, in the second equation of (2.1), we substitute instead of p(r, t)
its expression (4.1) we arrive at

Os bR2p®
a Y I T (R

(4.2)

For the first phase the relation R(t) is found from the expression
(see, for instance, [7 1)

= () — 2 (5) 1] @3

If we integrate Equation (4.2) and neglect small second-order quanti-
ties we obtain
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R R R 7 L e

In Fig. 3 results are shown of numerical calculations using Formula
(4 4) for the case g, = 10° m® per 24 br. day, m= 0.2, h= 20 m,

= 360 atm, %= 60 atm abs, rg = 0.1 m, k= 20 md, By = 0.028 cn,
V0 = 120 cm®/Nm T = T, and for various values of R (in meters) indi-

cated on the curves.
For clarity, the values of r are shown on the graph.

5. We now deal with the more general case of gas-condensate filtration
when the liquid phase is also in motion.

By analogy with gaseous liquid filtration, in this case the following
differential equations can be derived:

(5.1)
ds . p a
5% —a—t=—-d1vv1+A—f—)ﬂ—[m(l——s)—a’%—{mvz-gradp]
i . a
_ di (pva) = m 25 [p (1 — 9] (5.2)
16
L An assumption has been made in deriving (5.2},
namely, that the mass of condensate in the gas is
i \ small as compared with the mass of the gas.
i \ In the case of steady or stable filtration Equa-
\\\ tions (5.1) and (5.2) take the form
8
B \\\ _divvl_*_A_;o_v?'gradP:O; divpva=0 (5.3}
B N V2
\ @%‘% Following Khristianovich [8 ]
-\ = let us observe the change in the
o \:E ] gas-com.iensate factor, which is
ol gy e S the ratio of gas flow under normal
08 6rm  conditions Q, to the flow or dis-
Pig. 3. charge of condensate Q, along a

stream line.

It is clearly evident that the first equation of (5.3) can be put in
the following way:

. __ hnse P hG)p P
pvs-grad [ SOl g 2] [ LB 4P iy vy =0 (5.4)

Taking into account the second equation of (5.3) and substituting the
components of velocity v, on the x-, y-, z-axes along a streamline by the
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quantities dx, dy, dz which are proportional to them, we arrive at

_ h®b Pl
d{ fa(s) p +4 Po] 0 (5'5)

Thus along a streamline we have
J1(s) U2 rp t
AT -+ A—po = o = CONS (5.6)

The expression for the gas-condensate factor has the form

Q f1(s) pap -1
T = QZ — [ﬁ—;l—;_l_ Apl—AP] = [Ap, — ape] L = const (5.7)

With steady filtration, therefore, the gas-condensation factor is con-
stant along a streamline.

From (5.7) we obtain the connection between pressure and degree of
saturation.

Following [8 ], we introduce a new function
D
H = { kpdp (5.8)

0

The second equation of (5.3) can then be represented by
AH=0 (5.9)

Thus the problem of steady filtration of a gas-condensate mixture re-
duces to that of filtering a homogeneous incompressible liquid. Let us
discuss the transient inflow of gas-condensate mixture into a straight
gallery located in a semi-infinite stratum.

Pressure p(x, t) and saturation s(x, t) satisfy the following system
of differential equations:

U—8) L+ fals) ()] = S22

mus

L =9 (b= g (610

— [y ]+ spm 5
5(‘1‘ [Pf2 (s) g%] =

We specify the following conditions

p©,0)=p;s, p(x,0)=p;,  ploc,t)=p;, s(z,00=0 (5.11)

Because of the [I-theorem the systems (5.1) embody similarity and have
the form
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x

L= Fy (o, o, £) (&= W) (5.12)

§=F, (E, &y, Xa, %\) (0‘1 = ABp,®, op= %)

If we insert (5.12) into (5.10) we obtain the following system of
ordinary differential equations for F; and for F,:

1’ (8) d,f;;‘" dﬁg + (S )ddEF; (5.13)

— 2 g 4 (9) (G5 ) —U—8)8

dFl]_ o g ng

2F ; dF dF dFi\2 1 d[Fi(1—F
£8) PSR4 1y () S B4 1) () = -t R
Conditions (5.11) take the following form: (5.14)

P P Ps / 3

F1<0 d’11a‘2’ P3> 7:1 F1<00,d,1,d,2, _E):Il’ FgKOO,dl,dz, E)ZO
In order to be able to solve system (5.13) with conditions (5.14) it

is necessary to resort to one of the methods of numerical integration.

The authors are deeply indebted to G.I. Barenblatt for having dis-
cussed the results in this work.
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